首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4265篇
  免费   404篇
  国内免费   319篇
化学   1060篇
晶体学   36篇
力学   165篇
综合类   6篇
数学   29篇
物理学   3692篇
  2024年   2篇
  2023年   20篇
  2022年   52篇
  2021年   56篇
  2020年   45篇
  2019年   66篇
  2018年   60篇
  2017年   132篇
  2016年   149篇
  2015年   110篇
  2014年   210篇
  2013年   205篇
  2012年   168篇
  2011年   361篇
  2010年   241篇
  2009年   355篇
  2008年   311篇
  2007年   404篇
  2006年   338篇
  2005年   217篇
  2004年   208篇
  2003年   157篇
  2002年   142篇
  2001年   156篇
  2000年   114篇
  1999年   73篇
  1998年   106篇
  1997年   70篇
  1996年   61篇
  1995年   70篇
  1994年   60篇
  1993年   42篇
  1992年   45篇
  1991年   40篇
  1990年   27篇
  1989年   20篇
  1988年   22篇
  1987年   21篇
  1986年   9篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1981年   2篇
  1980年   3篇
  1976年   1篇
  1975年   5篇
  1974年   2篇
  1973年   9篇
  1972年   1篇
  1970年   1篇
排序方式: 共有4988条查询结果,搜索用时 15 毫秒
81.
The surface damage experiments of gallium arsenide (GaAs) single crystal irradiated by 1.06 and 0.53 μm nanosecond irradiations are carried out with fundamental and frequency-doubled Nd:YAG laser, respectively. The surface damage thresholds for both wavelengths are experimentally determined and the damaged morphologies and elementary component are analyzed with electron probe microanalyzer (EPM). It is found that the components of Ga and As almost keep constant in our experiments when the irradiated fluence is just around the surface damage threshold and no oxygen is found at all. The theoretical calculations on temperature rise for both wavelengths are carried out using the purely thermal model. It is shown that for irradiation with photon energy above the corresponding band gap the theoretical calculation is in good agreement with the experimental results; however, for that with photon energy just below the band gap, the experimental results cannot be effectively explained by the purely thermal heating mechanism. Combining with the experiment of multi-shot damage from references we finally conclude that the damage by laser irradiation with photon energy below the band gap should be explained by the micro-defect accumulation and consequently enhanced absorption heating mechanism.  相似文献   
82.
Determination of elemental composition of cement powder plays an important role in the cement and construction industries. In the present paper, Laser induced breakdown spectroscopy (LIBS) is used for measuring the concentration of cement ingredient. Cement powder samples are pressed into pellets. Laser pulses are focused on the surface of pellets. A microplasma is formed in the front of samples. The plasma emission contains information about the elemental composition of the samples. By assumption of local thermodynamic equilibrium (LTE) and using several standard cement samples, a calibration curve is prepared for each element. The major and minor elements of cement such as Ca, Si, K, Mg, Al, Na, Ti, Mn and Sr are qualitatively and quantitatively determined. For verification of LTE conditions, plasma parameters such as plasma electron temperature and electron density are computed. According to the obtained results, the LIBS technique could be a suitable method for determination of elemental composition in the cement production industries.  相似文献   
83.
Single-phase β-FeSi2 films on silicon (1 0 0) were fabricated by pulse laser deposition. The structure and crystal quality of the samples were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The field scanning electron microscopy showed that the film thickness increases with the increasing of the laser fluence. Moreover, atomic force microscopy observations revealed the changes of surface properties with different laser fluence. Based upon all experimental results, it is found that 7 J/cm2 is the most favorable for the formation of β-FeSi2 thin films.  相似文献   
84.
Glass layers for planar light waveguides prepared by Ag-Na ion exchange of different silicate glasses in molten salt baths are annealed and/or irradiated with a laser beam in the UV region, with different energy density values and total pulse numbers. The samples are mainly characterized by optical absorption spectroscopy, luminescence spectroscopy, and Rutherford backscattering spectrometry, in order to determine the role of irradiation parameters and of the host matrix structure in the aggregation phenomena. Photoluminescence spectroscopy gave information regarding the presence of Ag multimeric aggregates, the primal seeds for the growing (nano)crystals. The appearance of the plasmon resonance band in the optical absorption spectra proved the formation of Ag clusters and allowed the evolution steps of the clusterization process to be followed as a function of the energy deposited during the laser irradiation.  相似文献   
85.
A low power density single-pulse laser irradiation of the Si surface has been used for the study of formation and self-organization of silicon nanotips. A two dimensional regular array of hillock-like nanotips has been created in the central region, a disturbed array comprising crossed lines of hillocks in the near-central region, and the “V”-shaped array in the peripheral region. Therefore, the long-range organization of hillocks changes from the center toward the periphery, following the Gaussian-like laser power profile. The evolution of hillocks due to the flow instability of molten silicon is equivalent to the instability of a liquid layer falling down a vertical plate. The novel result is that the hillock-like soliton structures can be identified with the lump solitons resulting from the nonlinear hydrodynamic instability evolution.  相似文献   
86.
We defined conditions of the laser-aided formation of nanoporous structures with nanopores ranging in size from 40 to 50 nm using laser pulses of 10.6 μm wavelength at a pulse-repetition rate of up to (4-5)×103 Hz for a model metallic material (a two-component alloy “brass of 62%”). It has been established that the exposure to a uniform laser light at depths of up to 25-30 μm results in the formation of nanopores with a relatively uniform distribution across the surface. The resulting pattern contains both solitary pores and ramified porous channels. The nanopores are uniformly distributed within a subgrain, being fairly stable in size and shape. The nanopore size and shape feature larger non-uniformity on the subgrain boundary. The resulting metallic structures show promise for use as catalysts and ultrafiltration membranes.  相似文献   
87.
A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films.Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.  相似文献   
88.
The production of periodic structures in silicon wafers by four-beam is presented. Because laser interference ablation is a single-step and cost-effective process, there is a great technological interest in the fabrication of these structures for their use as antireflection surfaces. Three different laser fluences are used to modify the silicon surface (0.8 J cm−2, 1.3 J cm−2, 2.0 J cm−2) creating bumps in the rim of the irradiated area. Laser induced periodic surface structures (LIPSS), in particular micro and nano-ripples, are also observed. Measurements of the reflectivity show a decrease in the reflectance for the samples processed with a laser fluence of 2.0 J cm−2, probably caused by the appearance of the nano-ripples in the structured area, while bumps start to deteriorate.  相似文献   
89.
A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98 HV in the Cu alloy substrate to the highest level of 876 HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01 g after it has been abraded for 60 min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.  相似文献   
90.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号